

Weighing the utility of Sentinel-2 to better monitor the crop in Kansas



David M. Johnson

**USDA / National Agricultural Statistics Service** 



2016 Summer Landsat Science Team Meeting SDSU, Brookings, July 27<sup>th</sup>











## Field trips summary:

None of those sunny days provided coincident Landsat imagery.



8-day combined coverage of Landsat 7 and 8 only provides 12.5% likelihood of overpass for the day you are interested. Thus, 16-day is only 6.25%. Include cloud probability and the daily odds of acquisition are less than 5%!

#### What about Sentinel-2a on those sunny days?

Well, also no data.

But, at least in the winter wheat crop dominated central Kansas area a nice combination time series of L7, L8, and S2 exists for early 2016.

#### Typical NDVI crop phenology over US from MODIS



# Three visited winter wheat fields had reasonably cloud free Landsat time series from late 2015 through 2016 in conjunction with some Sentinel-2a scenes too.



#### With Sentinel-2, file and path names are long...

- S2A\_OPER\_MSI\_L1C\_TL\_MPS\_\_20160607T173825 \_20160607T222007\_A005014\_T14SNH\_N02\_02\_0 1.zip
- I:\S2\S2A\_OPER\_PRD\_MSIL1C\_PDMC\_20160608T0 55243\_R012\_V20160607T172910\_20160607T1729 10.SAFE\GRANULE\S2A\_OPER\_MSI\_L1C\_TL\_MPS\_ 20160607T222007\_A005014\_T14SNH\_N02.02\IM G\_DATA\S2A\_OPER\_MSI\_L1C\_TL\_MPS\_\_20160607 T222007\_A005014\_T14SNH\_B01.jp2

...there is a learning curve to the geographical tiling/reference system and....

# ...you have to constantly remind yourself what spectral bands are what.

Comparison of Landsat 7 and 8 bands with Sentinel-2



Site 1: May 3<sup>rd</sup>, 9:20AM estimated 39 bushels/acre yield





# Site 1: Time Series NDVI pictured 2/4 – 6/19



0.6

### Site 1: Near-coincident comparison

Sentinel-2a Landsat 8



Site 2: May 3<sup>rd</sup>, 11:24AM estimated 46 bushels/acre yield





# Site 2: Time Series NDVI pictured 12/2 – 6/27





### Site 2: Near-coincident comparison

Sentinel-2a Landsat 8







# Site 3: Time Series NDVI pictured 1/29 – 6/27



0.8

0.6

0.4

0.2

L7

S2

### Site 3: Near-coincident comparison

Sentinel-2a Landsat 8



Agricultural applications will benefit from finer spatial resolution imagery





### Site 2: Sentinel-2a red edge bands

(20 m, red=b7, green=b6, blue=b5)



#### Site 3: Sentinel-2a red edge bands

(20 m, red=b7, green=b6, blue=b5)



### Summary

- We need more frequent collections
  - Current ~5% daily chance from Landsat is poor
    - No real chance to monitor seasonal vegetation dynamics
  - Adding Sentinel-2a and b will really help
- 10m very compelling, 15m could also be considered
  - Not all crop fields are big
  - Not all crop fields are homogenous
  - We cannot still be fixed at 30m for L10 (2027?)
- Red edge
  - Real understanding of utility is needed

dave.johnson@nass.usda.gov www.nass.usda.gov